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Geometric Character of Black-Hole Entropy

Li Xiang1 and Zhao Zheng1

Received March 3, 2000

The geometry of the neighborhood near an event horizon is similar to the Rindler
metric, which leads to the thermal effect of black holes. The entropy of the scalar
field and the Dirac field are calculated in the black-hole background. The entropy
of the scalar field, which is proportional to the area of the event horizon, is
naturally derived. Under the condition of large-mass black hole, the entropy of
the Dirac field is still proportional to the area of the horizon. These results can
be applied to a large class of black holes. A new method for calculating the black
hole entropy is proposed which makes it easy to calculate the entropy of a high-
spin field in the black-hole background. We also consider extreme black holes
and point out that the topological entropy only has classical meaning.

1. INTRODUCTION

The dynamical origin of black-hole entropy has been an interesting and
important problem in theoretical physics since the thermal radiation of black
hole was discovered by Hawking (1975). To understand black-hole entropy
we need a good theory of quantum gravity because of the statistical meaning
of entropy. Valuable discussions in the semiclassical frame include the brick-
wall model (t’ Hooft, 1985) and entanglement entropy (Frolov and Novikov,
1993). The latter is associated with modes and correlations hidden from
external observers by the presence of a horizon. There is correlation between
the internal and external modes, and the entanglement entropy can be found
by counting external models. Using the brick-wall model, much work has
been devoted to studying the relation

S 5 aA (1)

for particular cases, such as the Schwarzchild black hole (SBH) or the
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Reisner–Nordstrom black hole (RN BH). The above formula with its geomet-
ric character may be universal and intrinsic, independent of the metric of the
black hole, but the calculation of black-hole entropy depends on the particular
case. Therefore, it is significant that the black-hole entropy is given by a
universal expression for the general case.

It is well known that the existence of a horizon is important for the
thermal effect of a black hole. Hawking radiation derives from vacuum
fluctuation near the event horizon. The black-hole entropy is related to the
horizon. The central idea of this paper is that the black-hole entropy derives
from the contribution of matter fields near the horizon.

The following sections examine the geometry near the horizon of a
general static, spherical black hole. In this background, the entropies of a
scalar field and a Dirac field are calculated. The result that entropy is propor-
tional to the area of horizon is naturally obtained. In particular, the calculation
for a Dirac field becomes simple by using this new method.

2. GEOMETRY NEAR THE HORIZON OF A STATIC,
SPHERICAL BLACK HOLE

For a general static, spherical black hole, the geometry of space-time
is described by

ds2 5 2f (r) dt2 1 f 21(r) dr2 1 R2(r) dV2 (2)

This equation describes a large class of black holes, including the Schwarz-
schild, Reissner–Nordstrom, and corresponding deSitter black holes, with
cosmological constant or dilaton. The coordinate of the event horizon r0 is
determined by the equation f (r0) 5 0. In the near neighborhood of the horizon,
the function f (r) is expanded in a Taylor series

f (r) 5 a(r 2 r0) (3)

where a 5 f 8(r0) 5 2k, and k is the surface gravity. Substituting (3) into
(2), we can rewrite the metric near the horizon as

ds2 5 2a(r 2 r0) dt2 1
dr 2

a(r 2 r0)
1 R2

0(r0) dV2 (4)

where R2
0(r0) 5 R2(r).r0. Although this looks unreasonable, we can regard it

as an approximation after the entropy is calculated. We introduce the coordi-
nate transformation

x 5
2

!a
!r 2 r0 (5)

Equation (4) becomes
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ds2 5 2x2 dt82 1 dx2 1 R2
0 dV2 (6)

where t8 5 1–2 at 5 kt. Equation (6) is very similar to the Rindler metric. The
Hawking temperature reads TH 5 1/(2p) corresponding Rindler time t8 with
imaginary period b 5 2p. It is easy to discuss the quantum matter fields in
the background and calculate their entropy because of the simplicity of
equation (6). This result is valid for a large class of black hole, so we have
a new method for calculating the entropy.

Equation (6) seems to be well known (Zaslavskii, 1997).

3. BLACK-HOLE ENTROPY: SCALAR FIELD

The equation of a massless field in curved space reads

1

!2g
­m[!2ggmn­nF] 5 0 (7)

Its solution is supposed as

F 5 e2ivt8f (x)Y(u, w) (8)

Substituting it into equation (7), we get

x22v2 1
f 9

f
1

f 8

xf
5

21
R2

0Y
F 1

sin u
­

­u 1sin u
­Y
­u2 1

1
sin2u

­2Y
­w2G 5 l2R22

0

(9)

where

l 5 !l(l 1 1), l 5 0, 1, 2, . . . (10)

is the separation constant. The equation for f (x) reads

f 9 1
f 8

x
1 1v2

x2 2
l(l 1 1)

R2
0

2 f 5 0 (11)

Using the WKB approximation with f (x) 5 exp[iS(x)], we get

px 5 ­xS 5 !v2

x2 2 k2 (12)

where k2 5 l(l 1 1)/R2
0. According to the quasiperiodic condition, the mode

number reads
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n 5
1
p #

v/k

e

pxdx 5
1
p F2!v2 2 k2e2 1 v ln

ke

v 2 !v2 2 k2e2G (13)

e is the ultraviolet cutoff. The number of modes with energy less than v is
given by

g(v) 5 # n(2l 1 1)dl

5
2R2

0

p # k dk Fv ln1 ke

v 2 !v2 2 k2e22 2 !v2 2 k2e2G (14)

and the density of states is

dg(v)
dv

5
2R2

0

p #
v/e

0

k dk ln
ke

v 2 !v2 2 k2e2
5

R2
0v2

pe2 (15)

The free energy and entropy reduce to

F 5
1
b #

`

0

dg(v) ln(1 2 e2bv)

5
R2

0

bpe2 #
`

0

dv v2 ln(1 2 e2bv) 5 2
p3R2

0

45b4e2 (16)

S 5 b2 ­F
­b

5
4p3R2

0

45b3e2 (17)

In the previous section we already pointed out the imaginary period is b 5
2p; then

S 5
R2

0

90e2 5
A

360pe2 (18)

where A 5 * !guugww du dw 5 4pR2
0 is the area of the horizon. Thus the

geometric character of the black hole is obtained, which derives from the
contribution of fields near the horizon.

4. BLACK-HOLE ENTROPY: DIRAC FIELD

Few papers are devoted to the problem of calculating the entropy of the
Dirac field in curved space because of the nature of the complicated equation
and the calculation. However, once we have successfully calculated the
entropy of a scalar field, we can find the entropy of the Dirac field in a static,
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spherical background by a similar calculation as in the previous section.
From the metric (6) the null tetrad is given by

lm 5
1

!2
(x, 1, 0, 0), nm 5

1

!2
(x, 21, 0, 0)

mm 5
1

!2
(0, 0, R0, iR0 sin u), mm 5

1

!2
(0, 0, R0, 2iR0 sin u) (19)

According to Newman, and Penrose (1962), the nonzero spin coefficients
are given by

g 5 e 5 2
1

2!2x
, a 5 2b 5

1

2!2R0

ctg u (20)

and the other differential operators are

D 5 lm­m 5
1

!2 11
x

­

­t
2

­

­x2, , 5 nm­m 5
1

!2 11
x

­

­t
1

­

­x2
d 5 mm­m 5

21

!2 1 1
R0

­

­u
1

i
R0 sin u

­

­w2
d 5 mm­m 5

21

!2 1 1
R0

­

­u
2

i
R0 sin u

­

­w2 (21)

Substituting (20) and (21) into the massless Dirac equation in curved space-
time (Chandrasekhar, 1976), one has the following equations:

11
x

­

­t
2

­

­x
2

1
2x2F1 1 12

1
R0

­

­u
1

i
R0 sin u

­

­w
2

1
2R0

ctg u2F2 5 0

11
x

­

­t
1

­

­x
1

1
2x2F2 1 12

1
R0

­

­u
2

i
R0 sin u

­

­w
2

1
2R0

ctg u2F1 5 0 (22)

11
x

­

­t
1

­

­x
1

1
2x2G1 1 1 1

R0

­

­u
2

i
R0 sin u

­

­w
1

1
2R0

ctg u2G2 5 0

11
x

­

­t
2

­

­x
2

1
2x2G2 1 1 1

R0

­

­u
1

i
R0 sin u

­

­w
1

1
2R0

ctg u2G1 5 0

The solutions are supposed as
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F1 5 e2ivt 1

!x
f1(x)Y1(u, w)

F2 5 e2ivt 1

!x
f2(x)Y2(u, w) (23)

G1 5 e2ivt 1

!x
g1(x)Ỹ1(u, w)

G2 5 e2ivt 1

!x
g2(x)Ỹ2(u, w)

Substituting into equation (22), we obtain

P̂2 f1(x) 5 0, L̂+Y2(u, w) 5 0

P̂+ f2(x) 5 0, L̂2Y1(u,w) 5 0 (24)

P̂+g1(x) 5 0, L̂+Ỹ2(u, w) 5 0

P̂2g2(x) 5 0, L̂2Ỹ1(u, w) 5 0

where

P̂6 5
d 2

dx2 1
v2

x2 6
iv
x2 2

l2

R2
0

(25)

L̂6 5
­2

­u2 1 ctg u
­

­u
1

1
sin2u 11

4
cos2u 6 i cos u

­

­w

1
­2

­w2 2
1
22 1 l2 (26)

Equation (26) shows that its solution is the spin-1/2 weighted spherical
harmonic (Li and Mi, 1999). The separation constant is

l 5 l 1 1–2 (27)

where l . 1–2. Using the WKB approximation with f , exp[iS(x)], we find

px 5 ­xS 5
v2

x2 2 k2 (28)

where k2 5 l2/R2
0. The number of modes reads

n 5
1
p #

v/k

e

px dx 5
1
p F2!v2 2 k2e2 1 v ln

ke

v 2 !v2 2 k2e2G (29)

and the number of modes with energy less than v is given by
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g(v) 5 # n(2l 1 1) dl

5
2R2

0

p # k dk Fv ln1 ke

v 2 !v2 2 k2e22 2 !v2 2 k2e2G (30)

The low limit of intergration is determined by l . 1–2 . The density of states reads

dg(v)
dv

5
2R2

0

p #
v/e

1/R0

k dk ln
ke

v 2 !v2 2 k2e2

5
2R2

0v2

pe2 #
1

b

y ln
1 1 !1 2 y2

y
dy

5
2R2

0v2

pe2 F2b2

2
ln(1 1 !1 2 b2) 1

!1 2 b2

2
1 b2 ln bG (31)

where y 5 ek/v, b 5 e/vR0. In the previous section, we saw that e is very
small, and R0 is very large for a general black hole with the mass of the sun
and length of 3 km, 1038 mutiplied by the Planck length. Therefore, when
e/R0 → 0, b → 0, the density of states

dg(v)
dv

→
R2

0v2

pe2 (32)

The free energy reads

F 5 2
1
b #

`

0

dg(v) ln(1 1 e2bv)

5 2
R2

0

bpe2 #
`

0

dv v2 ln(1 1 e2bv) 5 2
7p3R2

0

360b4e2 (33)

When the particle spin is taken into account, the degree of freedom will
contribute a factor to the free energy. For a massless particle with helicity
the factor is 1, otherwise it is 2. We have

F 5 2q
7p3R2

0

360b4e2 , q 5 1, 2 (34)

S 5 b2 ­F
­b

5 q
7R2

0

180e2 5
7q
8

A
360pe2 (35)

The entropy of the Dirac field is 7q/8 multiplied by that of the scalar
field if one takes the same cutoff. The difference is caused by two distinct
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statistical laws and two kinds of spin. Despite this, the entropies of the two
fields are both proportional to the area of the horizon, which is the intrinsic
and universal property of the event horizon.

5. ON EXTREME BLACK HOLES

In the previous two sections, we have shown that the dynamical behavior
of fields near the horizon is responsible for the geometrical character of
black-hole entropy. A new method for calculating the black-hole entropy has
been proposed, which make it easy and brief to calculate the entropy of high-
spin fields in curved space. But the method is invalid for extreme black holes
because of their vanishing temperature.

The entropy of an extreme black hole is an intriguing topic. According
to Hawking (Hawking and Horowitz, 1995), the entropy of a black hole is
related to the nontrival topology of spacetime. The Bekenstein–Hawking
entropy is given by

S 5
x
8

A (36)

where x is the Euler index, x 5 2 for a nonextreme black hole, and x 5 0
for an extreme black hole. However, the entropy of an extreme black hole
is still propotional to the area of the horizon according to the string viewpoint
(Strominger and Vafa, 1996).

In classical thermodynamics, the third law implies vanishing entropy of
a system with zero temperature. However, quantum statistical mechanics
allows a constant entropy per particle of a system, and therefore the total
entropy of a system may be nonvanishing. Thermodynamics is a classical
and phenomenal theory. Correspondingly, the so-called Bekenstein–Hawking
entropy is derived from the contribution of a classical action, and formula
(36) only has a classical meaning. The string viewpoint on the nonvanishing
entropy of an extreme black hole may be reasonable, which is analogous
with quantum statistical mechanics.
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